If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2-35g=0
a = 1; b = -35; c = 0;
Δ = b2-4ac
Δ = -352-4·1·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-35}{2*1}=\frac{0}{2} =0 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+35}{2*1}=\frac{70}{2} =35 $
| 60=3(g-78) | | -9(y+37)=-9 | | 7x-13=5-2x | | 3j^2+40j=0 | | 3(d-48)-46=20 | | 45=5(m-77) | | 11v-10v=20 | | 45=5(m−77) | | 25-2x=5+6x | | (−1.4z+0.7)=×40 | | 9.2-70=x | | 10x+50=15x+75 | | s÷3+3=5 | | 10x+50=15x=75 | | 8+i=10 | | x-6=17 | | 7x-5=9;x=9 | | 4x+11=2x+11 | | x+2+x=126 | | (x+1)+(x+2)=126 | | (x+3)+(x+3)=126 | | (x+2)+(x+3)=126 | | 5(7x-5)=30x-40 | | 63x2=126 | | x+6x=126 | | x+4x=126 | | x+x+9=126 | | x+x+10=126 | | x+-x+2=126 | | x+x+5=126 | | x+x+1=126 | | 3(x-5)=7x=+12 |